
Constructs and Evaluations Strategies for Intelligent
Speculative Parallelism -Armageddon revisited

Adoljo Gunman and Manuel Hermenegildo

Advanced Computer Architectures Program
Microelectronics and Computer Technology Corporation

Austin, Texas.

ABSTRACT

This report addresses speculative parallelism (the assignment of spare
processing resources to tasks which are not known to be strictly
required for the successful completion of a computation) at the user
and application level. At this level, the execution of a program is seen
as a (dynamic) tree -a graph, in general. A solution for a problem is a
traversal of this graph from the initial state to a node known to be the
answer. Speculative parallelism then represents the assignment of
resources to multiple branches of this graph even if they are not posi-
tively known to be on the path to a solution.

In highly non-deterministic programs the branching factor can be
very high and a naive assignment will very soon use up all the
resources. This report presents work assignment strategies other than
the usual depth-first and breadth-first. Instead, best-first strategies are
used. Since their definition is application-dependent, the application
language contains primitives that allow the user (or application pro-
grammer) to a) indicate when intelligent OR-parallelism should be
used; b) provide the functions that define “best,” and c) indicate when
to use them.

An abstract architecture enables those primitives to perform the
search in a “speculative” way, using several processors, synchronizing
them, killing the siblings of the path leading to the answer, etc. The
user is freed from worrying about these interactions. Several search
strategies are proposed and their implementation issues are addressed.
“Armageddon,” a global pruning method, is introduced, together with
both a software and a hardware implementation for it.

The concepts exposed are applicable to areaS of Artificial Intelli-
gence such as extensive expert systems, planning, game playing, and in
general to large search problems. The proposed strategies, although
showing promise, have not been evaluated by simulation or experimen-
tation.

1. SPECULATIVE PARALLELISM

In general, the execution of a program can be vIewed as a
(dynamic) graph, often also referred to as the program search
space (see Fig. 1.0.). Often, the execution of some parts of the
graph is known statically or dynamically to be required in order
to successfully find a solution to the problem in hand. Given
that enough resources (processors) are available, it is an attrac-
tive idea to use them to simultaneously explore different paths

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of
the publication and its date appear, and notice is given that copying
is by permission of the Association for Computing Machinery. To
copy otherwise, or to republish, requires a fee and/or specfic
permission.

of the execution graph. Speculative parallelism (also referred to
as “OR-parallelism”) is herein defined as the assignment of
spare (processing) resources to tasks which are not known to be
strictly required for the successful completion of a computation.

This type of parallelism can appear at many different levels
in the execution of a program. For example, at a low level,
instruction prefetching or lookahead buffers are a form of specu-
lative parallelism. At a higher level, taking both branches of a
conditional can also be considered a form of speculative parallel-
ism. At the user level, a given problem can be solved in a
“speculative way ” if the solution of the problem itself is formu-
lated as a search space which has to be explored in order to find
a solution. This last “user level” type of speculative parallelism
will be the main subject of this report.

I

Figure 1.0. An Execution Graph.

I

1.1. Some Open Issues

The execution of a program in OR-parallel fashion raises a
number of issues which need to be addressed:
Source-level constru+s and evaluation strategies which make it

easier and more efficient to take advantage of speculative
parallelism need to be found.

Methods and perhaps hardware support for speculative work
assignment and control are needed (i.e. so that required
work is always given priority with respect to speculative
work). Some previous work has been done in this area for
example, using “engines” [Zink] or other scheduling
mechanisms [Keller, Tinker], and through learning
[Lipovski].

Multiple binding environments for program variables appear
when alternative paths of computation are explored simul-
taneously. These have to be handled properly (such as by
“Change Control”). Extensive work has been done in this
area in support for multiple binding environments through
mechanisms such as “hash windows” and binding arrays;
implementation of symmetric “cut” and “commit” opera-
tors, etc. [Overbeek, Warren, Houri, Tinker, Ciepielewski].

0 1988 ACM O-89791-260.-8/88/0002/0558 $1.50 558

Storage: extra storage has to be allocated for the alternative
paths and (perhaps) node “memoing”. This represents a
classical space-time tradeoff (See Appendix 1 of [Cuzman &
Hermenegildo]). Semantic paging (Lipovski] can be used in
this context.

Application area,s should be further identified and characterized.

This report will address the two first issues mentioned
above: it will present source-level constructs and evaluation
strategies which will hopefully make it easier for the user to
take advantage of speculative parallelism. In addition, it will
address the problem of assigning resources to the different
branches of speculative work generated during execution.

Intelligent work assignme?:t strategies are needed because iu
highly deterministic programs, the branching factor of the exe-
cution graph is low, and exhaustive assignment of resources to
all possible branches can be a viable solution, In highly non-
deterministic programs, however, the branching factor can be
very high and a naive assignment of resources will very soon use
up all the resources on perhaps paths which hold little promise
of yielding useful results.

The search space for such highIy nondeterministic pre
grams is generally seen as a tree: at different points several
opportunities for “OR-parallelism” (more branches) appear. In
general the tree contains several solutions; the problem here is
to find one (and then to tell the other processors to stop work-
ing). Finding all the solutions requires an exhaustive traversal of
the search space, which can be best done with a naive (for
instance, breadth-first) strategy.

The work assignment strategies presented in this report
will address the assignment of available resources to the
branches of the search tree in ways which try to approach a
“best-first” strategy (rather than the naive depth-first or
breadth-first strategies). In fact, such a best-first strategy can
be viewed as a “depth-first” search (i.e. if a tree is drawn with
all its branches, the leftmost nodes are exploded first) but with
the variation that the nodes are reordered at several points
within the search so that the best are moved to the left (if not
physically, at least logically).

Organization of the report is aa follows: first, different
assumptions and definitions regarding search spaces and stra-
tegies are introduced. Then, source-level constructs for express-
ing OR-parallelism are proposed and a series of parallel best-
first evaluation strategies for these constructs are described.
These strategies are based on the definition of two estimator
functions (taken from well known “best-first” techniques):
Fpmg, the plausible-move-generator, and Fn, the static board
evaluator (alpha-beta pruning is not used herein). Some exam-
ples are then given of applications where guided OR-parallelism
can offer significant performance advantages over other stra-
tegies. Finally some implementation issues are addressed.

2. SEARCH CONCEPTS

In existing systems, search procedures either have to be labori-
ously described using a non-search oriented language (such as
LISP) or they are built into the programming language and
then the user or programmer cannot easily specify a different
search strategy from the one provided. For instance, Prolog has
a built-in search procedure which is depth-first. Generating

another search strategy is possible, but the programmer is
forced to write it out in detail. Another very popular search
strategy is breadth-first. These two are called “blind” stra-
tegies, since they do not take into account context information
about the nodes of the tree already visited and no attempt is
made to measure or assess whether “progress” is made towards
the solution. The search continues until a solution is stumbled
upon, or the computer time (or user’s patience) is exhausted or
the tree is completely explored.

In contradistinction to the above blind strategies, if it were
possible to measure (albeit imperfectly) whether a node in the
tree is closer or farther away from the solution than its prede-
cessors or brothers, then this knowledge of the problem domain
could be successfully used to guide the search [Kohli]. In this
report, the m&in emphasis is put on the programmer supplying
the needed intelligence or heuristic to measure “progress
towards the goal,” although the formerly mentioned blind stra-
tegies are also encompassed.

The following paragraphs list some assumptions and
definitions regarding search spaces and strategies.

2.1. Assumptions

The reader should skimp or skip through these assumptions, as
appropriate; they refer to well-known problem solving tech-
niques. Artificial Intelligence texts [Rich] cover the material in
this Chapter in greater detail.

Assumption: The search space is a graph containing no cycles.
That is, once we are searching, the new points visited will
never include some of the previous ones along the current
search path (although they may include duplicates taken
from other paths). This assumption is generally true
because each step in the search somehow “refines” the cri-
terion of the searcher, who gets “closer” to the end in some
mathematical (although not necessarily explicitly specified)
manner. For instance, if we are unifying several variables,
at one point we may have three “unbound” logical
variables; a step is such that one of them gets bound; so, a
cycle in the path is impossible. The path gets “closer to
completion” as we proceed along it. In most cases, the path
ends at a dead end (which we call False, or failure), but in
a few cases, the path ends in the answer looked for.

Assumption: The search space forms a tree. It may form a lat-
tice, but generally the different branches of the tree do not
communicate with each other, and thus a searcher has no
way to know if it or another searcher was already in this
point of the search space before. Thus, the lattice is broken
into a tree, where perhaps certain nodes located at different
branches in the tree are indeed the same; this sameness is
ignored. The ignorance is not due to unwillingness or
blindness; it is motivated by the current technological
tradeoffs in that it takes too much memory to store all
points of search space already visited, especially if they
were found “not very interesting.” As the technology bal-

ance changes in the nezt i0 years and main storage

becomes cheaper, it may be wise to return to the view 01 the
search space as a lattice, in order to achieve greater gains
(speedups) in speculative parallelism. [Guzman & Her-
menegildo] address this concept.

Assumption: The following concepts are equivalent: “OR-
parallelism,” ” Speculative Parallelism,” “If-then-else Paral-
lelism,” “Look-ahead Parallelism,” “Case Parallelism,”
“Eager Evaluation,” “Cond Parallelism,” “Boolean And
Parallelism.” Since in some cases the equivalences may not

559

be obvious, the following paragraphs define “OR-
parallelism” and demonstrate the equivalence of the other
definitions to this kind of parallelism. Consequently, the
remainder of the report will talk only about OR-
parallelism, without loss of generality.

2.2.1. Equivalences with OR-parallelism

OR-parallelism refers to the execution in parallel of a disjunc-
tion of two or more branches of computation. Of course, success
of at least one of the branches guarantees the success of the dis-
junction. As pointed out above, most programming constructs
which can make use of speculative parallelism can be expressed
as disjunctions and executed in an OR-parallel fashion.

2.2.2. If-then-else Parallelism

The programming construct
if P then Q else R;

s . .
can be expressed as

(or (and P Q S . ..)

(and (not P) R S . ..))
which can be executed in para1lel as shown below:

P/OR ‘not P
R

$...
“’ 2.2.3. Case or Cond Parallelism

The programming construct
(cond (Pl Ql) (P2 Q2) . . . (Pn Qn))

can be expressed as
(0~ [ani pp21 QJ

an

(and Pn Qn))
which can be executed in parallel as shown below:

PCF ’ Pn . . .

&I &Z... &

2.2.4. And Parallelism

Although AND-parallelism can be better considered to be
“strict” (rather than speculative) parailelism, some types of
independent AND-parallelism can also be conceivably reduced
to OR-parallelism (although a direct support approach, as in
the extended Warren Abstract Machine work presented in [Her-
menegildo] is probably more efficient):

can be expressed as
(2nd P Q)

(not (or (not P) (not Q)))
and therefore reduces to OR-parallelism.

Support for AND-parallelism where there are logic variables
in the paths explored in parallel requires additional mechanisms
[Hermenegildo] to those presented in this report.

2.2. Definitions

Most of these definitions refer to work in search algorithms for
artificial intelligence applications, as well as to work on parallel
processing and in particular speculative parallelism. For clarity,
however, the definitions will be exemplified in terms of game
playing.

Search Space. The space of possible computations which may
lead to solutions to the problem at hand; somewhere in
that space, a solution (a tuple of values) exists. There may
exist more than one solution (in this case, only one, the
first found, is of interest to us) or none -in this case,
“Failure” or “No possible solution” should be reported.
Without loss of generality, it is assumed that the search
space contains m dimensions, so that each point or node in
it (each candidate for a solution) is an (ordered) list or a
vector containing m elements. The meaning of these ele-
ments is, of course, application-dependent.

Plausible move generator. Given a point in search space which
is not a soIution, there are in general several possible
branches (“moves”) which execution can take. The function
of the plausible move generator is to provide the “best”
moves to make. For example, it can provide a list of all the
moves to make, ordered from best to worst, or a list of the
best n moves for consideration (ordered from best to
worst). What is “best” to the plausible move generator is
defined by a function Fpmg, which is application-
dependent. Therefore, it is provided by the user. It is
accepted that this function can only be an estimation of
the quality of a move: if a perfect Fpmg could be found the
problem could be solved deterministically by simply always
following the path which receives the highest value from
Fpmg. The purpose of Fpmg is to introduce some sort of
intelligence (which is application dependent) into the
search. However, the computation of Fpmg should require
only a very limited amount of resources. Therefore, it is
allowed to make some mistakes (to qualify as good a not so
promising branch, or not to list the best one in first place)?.
The function Fpmg maps (esplodes) a point or node in the
search space into a sequence of points of the form

(pl p2 .__ pp &rest)
which has the following meaning: points pl through pp are
the best children of that node; the &rest are “the other
children,” which are perhaps implicitly represented (i. e.,
they are not fully developed; they could be represented by
a function that will generate them, if called); or they may
be explicitly represented.

Static evaluator. The static evaluator Fn evaluates the “good-
ness” of a given point of the search space, by computing a
value that estimates its distance to the solution. It is also
supplied by the user. In this paper it is assumed that Fn is
a somewhat expensive computation: while it is easy to

t For instance, in chess, moves that place in check the piece being
moved are bad moves; a move that produces check is a good move; a
move that nullifies the previous move (The black bishop advanced
from square u to square v last time; now it will move back from
square v to square u) is considered bad; a move that generates two
checks, one to the queen and the other to the king, is good, etc. It is
accepted that a plausible move generator makes mistakes some times
(it is imperfect); if not, it could be by itself the central part of a
chess-playing program, rendering search unnecessary. These mistakes
must be done, however, “not too often.” Generally, one Fpmg is
enough, although several can be used: one for the initial game, where
the main strategy is to gain room, to dominate the center of the
hoard, to advance pawns and to have a solid back line; another Fpmg
for the middle game, and still another for the end-game. This is not
precluded, but it requires more work and domain knowledge by the
user.

560

determine whether a node is a solution or a failure, if it is
neither of these, then Fn could measure how close this node
is to a so1ution.S Such measurement will be used, presum-
ably, to decide upon the expansion of this node. If the esti-
mation takes a long time, it is better to go ahead and
expand for a while without estimation (by Fn) of “inter-
mediate” nodes. Eventually, Fn will have to be used, in
order to prune the search space.

Family. The family of a given node are all the descendants, so
far, of this node. When implementing this concept, usually
a family “resides” inside one processor.

Killing. Killing a node means refusing to consider it further for
development of descendants. Usually, a node is killed by Fn
at Armageddon time, or by Fpmg at node generation time.
Killed nodes will usually be stored in some place [Guzman
& Hermenegildo, Martinez], so that if a complete strategy
is needed, they can be resurrected. This meaning of kill will
be used throughout the paper, and is similar to the kill
concept in Lisp machines.

Deleting. A stronger version of ki/l: deleting a node means for-
getting it forever; it will be impossible to resurrect later.

Armageddon. A global killing of nodes where Fn is used to
judge, out of the z nodes being present, the (globally) best
b survivors. Different families will have, in general, different
number of survivors.

Global package. An array containing at least b (but preferably
more, say p) nodes, ordered in descending order by Fn,
together with other important parameters such as node
identification, processor holding it, etc. This global pack-
age is formed by gathering information from all the fami-
lies.

Complete Search Strategy. One that, if necessary, exhausts the
search space looking for a solution.

Wave: the youngest members of the dth generation of a node.
Starting from a node, a wave is generated by generating
the first generation such node, then the second, etc., and
deleting all but the dth generation nodes. Only leaf nodes
remain.

2.3.1. Notation used

The following symbols will be used through this report; their
meaning will become clear.
“z” is the number of nodes of the current wave or generation
“m” is the number of coordinates or characteristics of each

node or point in the search space.
“b” is the number of best children used as seed for the next

wave.
“p” is the number of plausible chiIdren that Fpmg generates for

each node.
“n” is the number of processors. b is often equal to n or a small

multiple of it.
“p’ is the number of nodes that the global package contains.

P2 b.

$ For instance, in chess, the static evaluator counts the quantity of
mat&e1 (pawns, bishops,...) found at a given point in search space; it
also takes into account pieces in check, what pieces dominate the
center; how are the kings (in check, castled); whether the queen is
pinned down, etc., and gives back a number saying how this particular
point (it is called a ‘<board” in chess) is found from the static point of
view. Positive numbers are favorable to white, negative numbers to
black. Again, the static evaluator is an approximate function (in the
sense that it sometimes fails) which is required to work fast. It is, of
course, application-dependent. As another example, consider a pro-
gram which simplifies algebraic equations, such as (x + x) + 2x, (y X
0) -* 0, etc. A good way to evaluate the distance from a particular
node or point in the search space to a solution (a maximally simplified
expression) is to count the number of characters in the current

representation, since that is a good approximation of “simple.”

2.3. Search Strategies

This Section defines (semantically) several strategies available to
the user for performing search; their exact specification and
their implementation is covered in the next Chapter. The pro-
posed strategies have the flavor of develop the best, then kill the

worst; they may be complete or not (Cf. Appendix 1).

2.4.1. Built-in Strategies

Several standard parallel search strategies are built into the
proposed system and are available for use:
l Depth-first.
l Breadth-first.
. Serial depth-first and serial breadth-first. Only one processor

is used.
. Default. The system supplies one of the above.
. Learn. In this case, the system begins with the default stra-

tegy but subsequently replaces it by an strategy derived by
the system itself (how this is done is not discussed in the

paper).
In all but last, no killing takes place;! the nodes are expanded
according to a standard strategy (implied by its name), which
continues until a solution is found or no further expansion is
possible.

2.4.2. Simple Strategies using User-defined Func-
tions

If the user specifies additional information to guide the search,
the question is: how is this information going to be used? As
pointed out before, it is assumed that the user will supply two
functions: Fn, and Fpmg.

Given those two functions, there are several possible search
strategies that employ them, as shown in the next paragraphs,
The first two strategies use only Fn or Fpmg. The other stra-
tegies try to combine the two functions.

Strategy l.- From each father, only p children are gen-
erated

Fn is not used in this strategy, only Fpmg. Fpmg generates only
p plausible descendants from each father: those having good
likelihood of containing the answer. Each father thus exploded
is then deleted. Fpmg is judged capable of deciding at birth
whether a newborn is not very promising and can be immedi-
ately “killed.” In a practical case, Fpmg is called to generate,
instead of a fixed number, an average number p of descendants.

This strategy resembles exhaustive search but with Fpmg
limiting the offsprings of each node. No Armageddon takes
place. Thus, little global communication is needed.

Strategy &.- The best b oJ the dth generation (chosen by
Fn) are selected

Fpmg is not used; only Fn. Thus, every node explodes into all
its children, and then gets deleted. Its children in turn explode,
etc., until the (complete) dth generation is reached. [Only the
leaves of the tree comprise the dth generation.] Then Armaged-
don takes place according to Fn, which chases the best b nodes.
It can be convenient to make b equal to the number of proces-
sors available, but that is not a binding requirement. These best
b nodes of the dth generation are “the seed” chosen for further
expansion; these cycles ezpand and kill repeat until a solution or
failure is found.

561

Because these b nodes are chosen globally, some families
will have several survivors; others, none. So, some amount of
node (“seed”) exchange is necessary. See Consideration 2 below.
Also note that resource consumption, rather than generation
counting, can be used as a more practical means to trigger
Armageddon. Consideration 1 below deals with this issue.

Figure 2.3.1. Wave Computation: Symmetric Strategy

2.4.3. Combination Strategies

Strategies 1 and 2 can be combined to arrive at a generation of
better children than if only strategy 1 or if only strategy 2 were
used. There are several manners to combine them, as well as
practical (architectural) considerations that come into play.

The combination strategies are basically of two types:
“Wave” strategies and ‘LContinuous” or “Front” strategies.
Wave strategies proceed in stages: i.e. there are recognizable
(perhaps even system-wide) generation and pruning phasest
“Front” strategies intermingle the generation and pruning
stages so that there is a continuous ‘(front” of computation.

Strategy S.- Symmetric Strategy

Starting with b nodes (See Figure 2.3.1), each one develops its
best p children using Fpmg, and these children their own p chil-
dren, etc., until the dth generation is reached. At this point,
there are z = b(ptd) nodes. Once the dth generation is reached,
the function Fn is called to cause Armageddon. The evaluation
of Fn occurs in parallel, since there are several processors. Each
processor, while pruning its own nodes, will take a look at the
values that Fn attained in nodes in other processors. Chapter 3
shows a method for performing this lookup. Thus, the z nodes

t In a family, only the leaf nodes -those of the dth generation- are
evaluated by Fn; all the intermediate nodes were either killed at birth,
because they were not worthy (according to Fpmg) of further descen-
dance, or they were deleted once their descendants had been generated
by Fpmg. Thus, Fn never evaluates a node and an ancestor of such
node. It is therefore correct to assert that Fn only evaluates nodes of a
wave.

are reduced by Fn to the (globally) best b. These survivors will
be the “seed” to again multiply up to the dth generation, etc.
until a solution is found. $ The best nodes will be unequally
spread among the families; thus, some amount of node (“seed”)
exchange is needed (See Consideration 2).

Consideration 1: Equal time per Family. If (ZJ it is likely to
be the case) one processor is used for each one of the b nodes to
generate its pfd descendants, in practice some processors will
finish before others, and will sit idle waiting for Armageddon.
This waiting, however, can be avoided: assume that a processor
has reached the dth generation, has used Fn to evaluate each of
its dth generation nodes, but Armageddon has not arrived yet.
Instead of sitting idle, it uses its spare pre-Armageddon time to
explode (using Fpmg) some of its best dth generation children,
giving rise to some d+ith generation nodes that may possibly
contain the solution sought. Since Fn is a relatively slow func-
tion, it is not practical for these “last minute” nodes to be
evaluated by Fn. The parents of these “last minute” nodes will
meet Armageddon, thus having an opportunity to further mul-
tiply. Thus, unless these L‘last minute” nodes contain the solu-
tion, they will be re-created again, after Armageddon. This
slight drawback applies also to the “last minute” nodes of the
Foster Children Strategy (see below), but it is overcome by the
Continuous Armageddon Strategy.

In summary, each family has the same time to procreate
children. This time is determined by the slowest family to reach
its dth generation. Meanwhile, all other families have gone
beyond their dth generation. Then Armageddon comes.

Consideration &: Imported Seed. The possibly uneven distrl-
bution of the best b survivors among the families (or processors)
makes necessary for some families to import some nodes alter
Armageddon has chosen the best b. Section 3.2 explains how
this is done, making use of a global communication facility and
the global package concept.

Strategy 4: Foster Children

This is a slight variant of strategy 3, motivated by Considera-
tions 1 and 2. Once a family has reached its dth generation
descendants, has used Fn to evaluate them, and is waiting for
Armageddon, instead of using its spare pre-Armageddon time
for developing only some of its best d generation children, it
may also consider for development (importing them, if needed)
some of the globally best children, taking them away from their
families. Thus, children developed by a family after its dth gen-
eration will be a mixture of its own children plus imported (or
foster) children. Since importation or adoption of children from
other family takes extra cpu and communication time, the value
assigned by Fn to foreign children has to be weighted by a fac-
tor (akin to an import taz) before comparing it with the value
of its own (local, domestic) children. This strategy gives excep-
tionally good children? the opportunity of adoption by other
families.

Strategy 5.- Continuous Armageddon

Like in the “foster children strategy,” all children are candi-

$ Armageddon is a global process; it would be easy to ask each family
to kill most of its own d generation children, without taking into
account the merits of the children of other nodes. That is nor
Armageddon: in Armageddon only the globally best b nodes survive.

f m order to be considered among the best children, these children
were already evaluated (through Fn) by their respective families.

562

dates for adoption by other families. The previous strategies,
however, work in cycles or “waves”: reproduce, kill, reproduce,
kill, Nevertheless, it is possible to intermix the reproduction
and the killing, as follows. If each family has access to a global
package containing the best b nodes in the whole population (as
judged by Fn) which are waiting for expansion, this information
can be used locally to select which nodes to expand next,
import, or kill.

Ezpcpansion. Normally, a processor begins in expansion mode;
given a node, it will generate (using Fpmg) a given number
(such as pfd) of descendants.

Evaluation. After expansion, a processor proceeds to evaluate
(using Fn) all its created descendants; each of the evaluated
nodes tries to gain access to the global package; presumably a
few succeed, displacing from the global package other less valu-
able nodes (which then will have to be killed by the processors
owning them). Nodes which did not succeed in getting into the
global package are killed, as well as nodes expelled from the glo
bal package.

Selecting the next node for expansion. The processor now
selects the best node from the global package for expansion,
perhaps affected by an import tax. The node is deleted from the
global package. Then, the processor goes to “expansion” state
again.

As shown in figure 2.3.2, at any point in time there is a
“front” of nodes being expanded in the tree, and others which
are waiting for expansion and are tagged with their ‘Lgoodness”.
In summary, after a number of nodes or generations, a proces-
sor evaluates Fn for all its children (Pl in Fig. 2.3.2) and it
selects the most promising node in the system to expand next
(this could be one of Pl’s own nodes, or a foreign node, as in
Fig. 2.3.3).

Pl/Fn

Figure 2.3.2. Strategy 5: Simultaneous Evaluation and Expansion

3. IMPLEMENTATION ISSUES

The characteristics that the different functions and parameters
should have are described here, as well as the implementation of
some of the previously discussed strategies.

Figure 2.3.3. Processor Pl expands a Foster Child

3.1. Specifications needed

It is time to say how the user gives and constructs the “intelli-
gent” functions. The exact syntax is left somewhat undefined; a
few examples are given in Lisp.

3.2.1. Specification of Fn

Fn is a function of one argument that maps a node into a
number: the smaller this number is, the closer this node is to a
solution. A solution need not have a value of Fn = 0; these
values are used only for relative comparison among nodes. For
example,

(defun Fn (p) (string-length (car p)))
will measure the length of the string which is the first (and
only) constituent of point p. Such Fn will be useful, for
instance, for an algebraic simplification program (See footnote
“$” in Section 2.2).

3.2.2. Specification of Fpmg

User-provided, Fpmg maps a node into a list of its best children
and a &rest that could be implicit or explicit (Section 1.2
“Definitions.“). Thus, Fpmg should generate at least b (but
preferably more) nodes starting from the given point; it should
order these so that the best b are (in descending order of
worthiness) in its result (a list). It is up to Fpmg how the nodes
are generated, and what criterion is used for ranking them. For
example, given a node of the form

(1 1 3 x Y)
which represents some point with five natural number ccordi-
nates (two of them not yet specified), Fpmg may return

((1 13 1 Y) (1 1 3 2 Y) (1 1 3 x 1) (1 1 3 x 2)
‘rest (1 1 3 (>2) Y) (1 1 3 X (>2))

meaning that the first four nodes are the best children of their
parent, and the rest is a formula for further generation of “not
so good” children. In this example, Fpmg considered “better”
those nodes with small natural numbers. The list (> 2) stands
for a natural number greater than two; it will be “expanded” if
necessary by the completion strategy; it is an example of a
representation for a LLrest.” Fpmg should generate a “rest” if a
complete strategy (Cf. Appendix 1) is required.

3.2.3. Specifying other Parameters

The following parameters need to be specified before an intelli-

563

gent search can start:
. The search strategy, to be chosen from Section 2.3, as well as

the parameters that apply to that particular strategy (Cf.
Section 1.2 “Definitions”), such as b, p, d, etc.

l The starting point or node.
l The function that determines if a node is a failure.
l The function that determines if a node is a solution (success).
l Whether this search is going to be complete or not.
l If the, search is complete, how to handle the rest of both

Fpmg (see previous paragraph) and those fertile children
killed by Armageddon (Cf. previous chapter).

3.2.4. Starting the Search

In order to start the search, the user will simply say
(parallel-search initial-node Fn Fpmg . . .),

where parameters not supplied acquire default values.

3.2. Implementation of Some Strategies

While the system is not implemented, some thought has already
been given to the implementation of several functionalities,
including the most promising strategies. Strategies 2, 3 and 4
use simple Armageddon; Strategy 5 uses Continuous
Armageddon. It is sufficient to explain, then, these two killing
procedures.

3.3.1. Simple Armageddon

Depending somewhat on the number of processors and type of
architecture being used (shared cluster [Guzman & Krall], global
memory [Guzman], or another type -such as message
passing- as well as its bandwidth and latency), this killing pro-
cedure can be implemented in slightly different manners. Two
will be described; several others are easy to imagine. The com-
mon idea is that a global ordered package of the best b nodes
considered as candidates for surviving Armageddon is passed
(together with ancillary information such as the node
identification) around the processors, which have an opportun-
ity to update it, until a final package is reached, containing the
surviving nodes. This package is passed back to the processors;
each of them takes one (or a fixed small number) of the sur-
vivors for further reproduction by Fpmg.

1. Serial build-up of the best b

A kind of serial sort-merge. If the processors are numbered 1
through n, then processor I builds a package containing its best
b nodes (of processor l), and passes such package to processor
2, in a daisy-chain fashion. In general, processor i merges its
best b nodes with those of the package, and the resulting pack-
age is passed to processor i+l. The package arriving back to
processor 1 obviously contains the globally best b nodes.

Then, processor 1 picks one (or b/n, if b > n) node from
the package, deletes such node(s) from the package, passes the
smaller package to processor 2, and starts to work in developing
the chosen node(s). Each processor chases b/n nodes from the
package and passes the remainder to its successor. In deciding
which node(s) to select from the package, a processor will prefer
a local one: one which resides within the processor, or in a
nearby processor. The topology of the interconnection fabric
among processors dictates which processors are “near” which
others.

2’. Simultaneous build-up oj the best b

The n-l merge operations could also be done in parallel; for
instance, each even-numbered processor (2, 4, 6, . ..) could merge
its best b candidates with those of the preceding processor (2
merges data from 1 and 2; 4 merges data from 3 and 4, etc.);
then, each processor whose number is a multiple of four (4, 8,
12, . ..) merges its result with the result obtained by the preced-
ing processor (4 merges results from 2 and 4; 8 from 6 and 8;
etc.), and so on. The result of the final merge could also go
down in this binary-tree fashion.

9. What to do while waiting

Some time passes since a processor submits its best b nodes to
Armageddon until the same processor decides what node(s) to
develop next. Instead of idling, the processor could expand Yen-
tatively” its most promising nodes; perhaps it will hit the solu-
tion while waiting for the package to come back. Strategies 4
and 5 referred to this.

3.3.2. Continuous Armageddon

To implement this strategy, it is necessary to have a system-
wide array (containing the global package) to which access can
be gained from any processor. A processor may try to read the
highest node in the global package, or it may try to write into
the global package a node with a given value v. A write opera-
tion will only succeed if

v > Min
where Min is the smallest of the values of the nodes in the glo-
bal package.

1. The necessary hardware

The inclusion of a MAX network simplifies the operations with
the global package.

The System-wide Array. This hardware holds the global
package, comprising p elements, ordered. It contains also two
registers where the values Max and Min are stored. Of course,
such a facility is readily available in a shared memory machine.

The MAX network. This network can be implemented using a
wired-or bus (described below), through which all the processors
could be simultaneously trying to write values vl, v2, . . . into
the system-wide array. Only the value of one of the processors,
that with the maximum value of v, will be chosen. If this value
is larger than Min, it will be inserted in the proper place in the
system-wide array, through hardware supplied with such array.
In practice, many processors will not be trying to access the
system-wide array, but only a few. When a new node gets
inserted in the array, the lowest node goes out, and the
system-wide array has to inform its proprietor that such node
should be killed.

For reasons that will become clear soon, the MAX network
is time-multiplexed (in a cyclic fashion) among the following
functions: la. Select highest processor; lb. Give to it the best
node of the system-wide array; 2. Select node with value v for
possible insertion in the system-wide array; 3. notify to certain
processor that a particular node of it should be killed because it
was expelled from the system-wide array. If one of these cycles
is not used, it is wasted.

2. The operations

564

A few operations are necessary for using of the system-wide
array through the MAX network; this use is simultaneous by all
the processors.

Reading the best node. This is accomplished by using the
MAX network to select the highest processor (highest processor
number) trying to read the best node; in the next cycle of the
hIAX network, such reading does indeed take place. This uses
cycles la and lb.

Trying to write a node with value v into the system-wide
array. This is done by using the MAX network during cycle 2,
in the manner described under “The wired-OR bus” below.

Killing the lowest node. If necessary, the system-wide array
notifies the corresponding processor that one of its nodes should
be killed. This happens during cycle 3; the array uses the bus
directly to access the needed processor.

S. The wired-or bus

This bus should have as many data lines as the value of Y has
bits, plus a few control lines to specify what cycle (see above) it
is in. Each processor wishing to write a value v in it (during
cycle 2) writes the bits of v serially, starting from the most
significant one. After writing a bit, the processor reads such bit;
if it is different than what it wrote (meaning that some other
processor has written a bigger bit), it should withdraw from
additional writing tries on the remaining lower significant bits
of v during this cycle 2. In this manner, only the highest value
of v gets written into the wired-or bus.

At the end of cycle 2, each processor knows whether he
succeeded or failed in writing its value to the system-wide
array. Whether a processor succeeds or fails, it keeps trying to
write its best node into the global package. A processor that
succeeds now will try to write what used to be its second best
node, but is now its best node. Also, as a processor develops
more nodes and evaluates them with Fn, its own list of best
nodes changes. Thus, at any moment, the system-wide array
contains the globally best /3 nodes.

4. CONCLUSIONS

The previous sections have addressed the issue of efficient
management of speculative parallelism. It was pointed out how
in highly non-deterministic programs the search tree to be
explored can be very large, so that a naive assignment of
resources will result in very inefficient execution. The use of
resource assignment algorithms based on best-first search stra-
tegies and the addition to the user language of primitives for
the use of such algorithms were proposed. Such primitives allow
the user to indicate when intelligent OR-parallelism is to be
used and to specify the functions that define “best” in the
best-first search algorithms. Two such functions, Fn and Fpmg,
were proposed for this purpose. Several parallel evaluation stra-
tegies for performing resource management in an OR-parallel
search based on the use of those functions were also proposed.
‘LArmageddon”, a pruning method based on global knowledge,
was introduced. Roth software and hardware implementations
of “Armageddon” and the global knowledge maintenance sys-
tem associated with it were proposed. It is believed that a sys-
tem based on the techniques presented in this paper will make
it possible for the naive user to perform search over a large

search space, in an efficient way, and achieving speedup through
the use of OR-parallelism without having to be concerned with
issues such as processor synchronization, pruning of computa-
tions, scheduling, resource management, etc.

The next step in this work would be to implement (or
simulate) and evaluate (a) some of the proposed strategies,
perhaps with modifications suggested by the evaluation; and (b)
to do likewise with the corresponding hardware associated to
the most promising strategies. these evaluations must be done
against real symbolic applications involving search.

Figure 3.2. Architecture for Continuous Armageddon

Appendix I.
Complete Strategies

The best-first strategy is complete if nodes killed are resurrected
when the best nodes do not contain a solution. The solution
now has to be sought in parallel among the resurrected or their
descendants, most likely using again a best-first approach.

1.1. Complete and Incomplete Strategies

If, for some reason (lack of time to make a complete search;
lack of memory to store killed nodes or pointers to “&rest” of
expansion lists, availability of alternate search or procedural
strategies, etc.) it is desired not to complete the search, then
“failure” can be reported after the best nodes are found sterile
-that is, just before resurrection.

Thus, the best-first strategy is complete if killed nodes are
resurrected (and searched, expanded, etc.) if necessary; and it is
incomplete if killed nodes are considered deleted: resurrection is
not allowed.

1.2.1. Incomplete Search

Having failed to find a solution among the best nodes (non-
resurrected nodes), this alternative reports a failure. It should
be interpreted aa “the best nodes do not contain the solution.”
The user probably wants to try other strategies or algorithms or
alternatives in seeking the solution; for the best first approach,
he gives up.

1.2.2. Complete Search

565

For this completion, the killed nodes (comprised by (a) the
remainder or &rest of the nodes which were not generated by
Fpmg; and (b) the remainder of the nodes that were not
selected by Fn as worthy of further expansion) are resurrected
now. A solution is sought among them, or among their descen-
dants. Search continues, perhaps in a best-first manner again.
Probably this time the solution will be found. Else, when it is
time for the second resurrection, the user has the same two
choices: either to give up or to complete the search. If he gives
up, he has used an incomplete search.

12.3. Getting less and less incomplete

The best-first strategy proceeds in cycles. Starting from one (or
b) node(s), and going through a series of Armageddon cycles,
either a solution is found or sterility (no further descendants) is
met. It is then time for Resurrection of all the nodes killed. At
each resurrection, the user has the choice to complete or to give
up the search, Each resurrection is a step towards completion,
towards a complete search strategy. Thus, resurrection [a
major cycle] comprises many Armageddons [minor cycles].

References

Batcher, K. E. Sorting Networks and Their Application. AFIPS
Conj. Proc. 32:307-314, 1968.

Bowen, D. L., Byrd, L., Pereira, L. M., Pereira, F. C. N. and
Warren, D. H. D. Prolog on the DEC system-10 User’s
Manual. Technical Report, Dept. of Artificial Intelligence,
Univ. of Edinburgh, Oct. 1981.

Ching, Wai-Mee. Evon: an extended von Neumann Model for
Parallel Processing. Proc. 1986 Fall Joint Computer Conf.
363-371. IEEE Catalog # 86CH2345-7.

Ciepielewski, A. and Haridi, S. Control of Activities in the Or-
Parallel Token Machine. In 1984 fnt’l. Symp. on Logic Pro-
gramming,, 49-58. IEEE Computer Sot. Press.

Guzman, A. AHR: a Parallel Computer for Pure Lisp. In Paral-
lel Computation and Computers for Artificial Intelligence,
J. S. Kowalik (ed.), Kluwer. 1987 (In press).

Guzman, A. and Hermenegildo, M. Constructs and Evaluation
Strategies for Intelligent Speculative Parallelism - Armaged-
don revisited. MCC Report PP-220-87. This report is an
expanded version of the Conference paper of the same
name.

Guzman, A., Krall, E. J., McGehearty, P. F., and Bagherzadeh,
N. Performance of Symbolic Applications on a Parallel
Architecture. MCC Technical Report PP-163-87. Also sub-
mitted to the International Journal of Parallel Program-
ming.

Hermenegildo, M. An Abstract Machine Based Execution Model
for Computer Architecture Design and Eflicient Implemen-
tation o/Logic Programs in Parallel. Ph. D. Thesis, Dept.
of Comp. Science, U. of Texas at Austin, TR-86-20, 1986.

Houri, A. and Shapiro, E. A Sequential Abstract Machine for
Flat Concurrent Prolog, Technical Report CS86-20, Dept.
of Computer Science, The Weizmann Institute of Science,
Rehovot 76100, Israel.

Keller, R. M., Lin, F. C. H., and Tanaka, J. Rediflow Multipre
cessing, Digest of Papers, Spring COMPCON ‘84, February
1984, IEEE Computer Society.

Kohli, M. Controlling the execution of Logic Programs:
Specification and Compilation of Control Knowledge. Ph. D.
Thesis, U. of Maryland, College Park, 1987.

Kumar, V., and Kanal, L. N. Parallel Branch-and-Bound For-
mulations for AND/OR Tree Search. IEEE Trans. on Patt.
Analysis and Mach. Int. 6:76&778, Nov. 1984.

Lipovski, G. J. and Hermenegildo, M. V. B-log: A Branch and
Bound Methodology for the Parallel Execution of Logic
Programs. Proc. 1985 Int’l Conf on Parallel Processing,
IEEE Computer Society. *

Martinez, T. Smart Memories: Potential Functionality and a
Proposed Architecture. MCC Technical Report PP-178-87.

Overbeek, R. A., Gabriel, J., Lindholm, T., and Lusk, E. L.
Prolog on Multiprocessors, Argonne National Laboratory,
Argonne, 111. 60439.

Rich, E. Artificial Intelligence, 1983, McGraw-Hill, N.Y.
Tighe, S., Zink, K., Brice, R., and Alexander, B. A flexible

approach to the study of graph reduction architectures.
MCC Technical Report PP-295-86. Oct. 86.

Tinker, P. and Lindstrom, G. A performance-oriented Design
for OR-Parallel Logic Programming. Proc. 4th. Int’l Conj.
on Logic Programming, 1987. MIT Press.

Warren, D. H. D. OR-Parallel Execution Models of Prolog. in
Proceedings oj TAPSOFT 87. Springer-Verlag, 1987.

Zink, Ken, Engines as a Method of Controlling Eager Evaluation
in Graph Reduction, MCC Technical Report PP-393-86.

566

